Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Plant responses to water stress is a major uncertainty to predicting terrestrial ecosystem sensitivity to drought. Different approaches have been developed to represent plant water stress. Empirical approaches (the empirical soil water stress (or Beta) function and the supply‐demand balance scheme) have been widely used for many decades; more mechanistic based approaches, that is, plant hydraulic models (PHMs), were increasingly adopted in the past decade. However, the relationships between them—and their underlying connections to physical processes—are not sufficiently understood. This limited understanding hinders informed decisions on the necessary complexities needed for different applications, with empirical approaches being mechanistically insufficient, and PHMs often being too complex to constrain. Here we introduce a unified framework for modeling transpiration responses to water stress, within which we demonstrate that empirical approaches are special cases of the full PHM, when the plant hydraulic parameters satisfy certain conditions. We further evaluate their response differences and identify the associated physical processes. Finally, we propose a methodology for assessing the necessity of added complexities of the PHM under various climatic conditions and ecosystem types, with case studies in three typical ecosystems: a humid Midwestern cropland, a semi‐arid evergreen needleleaf forest, and an arid grassland. Notably, Beta function overestimates transpiration when VPD is high due to its lack of constraints from hydraulic transport and is therefore insufficient in high VPD environments. With the unified framework, we envision researchers can better understand the mechanistic bases of and the relationships between different approaches and make more informed choices.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract The flow duration curve (FDC) is a hydrologically meaningful representation of the statistical distribution of daily streamflows. The complexity of processes contributing to the FDC introduces challenges for the direct exploration of physical controls on FDC. In this paper, the controls of climate and catchment characteristics on FDC are explored using a stochastic framework that enables construction of the FDC from three components of streamflow: fast and slow flow (during wet days) and slow flow during dry days. The FDC during wet days (FDCw) is computed as the statistical sum of the fast flow duration curve (FFDC) and the slow flow duration curve (SFDCw), considering their dependency. FDC is modeled as the mixture distribution of FDCwand the slow flow duration curve during dry days (SFDCd), by considering the fraction of wet days (δ) for perennial streams and bothδand the fraction of days of zero streamflow for ephemeral streams. The Kappa distribution is employed to fit the FFDC, SFDCw, and SFDCdfor 300 catchments from Model Parameter Estimation Experiment (MOPEX) across the United States. Results show that the 0–20th percentile of FDC is controlled by FFDC and SFDCw, the 90–100th percentile of FDC is controlled by SFDCd, and the 20–90th percentile of FDC is controlled by three components. The relationships between estimated Kappa distribution parameters and climate and catchment characteristics reveal that the aridity index, the coefficient of variation of daily precipitation, timing of precipitation, time interval between storms, snow, topographic slope, and slope of recession slope curve are dominant controlling factors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
